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IDENTIFICATION AND PREDICTION OF PROTEIN ADSORPTION
BREAKTHROUGH, DESORPTION, AND FRACTIONATION IN A PACKED COLUMN
USING A NEURAL NETWORK

Fang Ming, M. Yang, John Howell and John Hubble
School of Chemical Engineering, University of Bath, UK.

ABSTRACT

A gimple neural network with a three-node hidden layer
has been used to identify and predict protein adsorption,
desorption and fractionation profiles in a 25 x 1 cm 1ID
Productiv™ CM ion-exchange column. To predict the effect of flow
rate on the adsorption breakthrough curve, two sets of data
obtained at the maximum and minimum of the full range of flow
rates used were sufficient to train the neural network which was
then able to predict the effects of flow rate changes within the
training range on the adsorption breakthrough curve. This
training method was also applied to explore the effects of flow
rate on desorption and fractionation. It was found that the
network training algorithm performed satisfactorily if the flow
rate data for desorption and fractionation were scaled in the
form of logarithm.

INTRODUCTION

Modeling protein chromatographic processes in a packed
column is of great importance for performance optimization and
scale-up. Yet the physical and thermodynamic phenomena involved
in the protein adsorption or desorption process are still not
fully understood (1). A mechanistic model mway give good
predictions for a linear adsorption or desorption process, but
the use of such a model is limited for nonlinear adsorption
processes. Simplifying assumptions are usually needed to develop
a model which handles the problem more easily and to reduce the
computation time. Prior or on-line determination of the isotherm
parameters, maximum capacity, g, and dissociation constant, K,
and adsorption or desorption rate constants is usually required
by a mechanistic model. These parameters are often determined by
separate measurements, usually taking days. If a model includes

the factors of mass transfer, the values of bed voidage, particle
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porosity, diffusion, and axial dispersion coefficients will be
required. This consequently requires the use of correlations
which need validating or separate measurements, which are time
consuming. Moreover, the reliability of such parameter
determination is often questionable. Tsou and Graham (2)
developed a two-phase resistance model, but their model could not
predict the early part of the breakthrough curve well. Skidmore
and Chase (3) and Skidmore et.al. (4) developed a simple kinetic
rate constant model and a film and pore diffusion model for
lysozyme and bovine serum albumin (BSA) adsorption in a column
packed with Sepharose FF ion-exchanger. In order to give a good
curve fit, the values of g, and k; estimated from the isotherm
and a batch uptake experiments needed to be readjusted for each
case. This shows that a mechanistic model may give reasonable
predictions, but at a greater expense of a process mechanism

investigation and parameter predetermination.

For a nonanalytic or preparative packed column, stepwise
desorption is a nonlinear process. Desorption, whose mechanism
is still not fully understoocd, usually occurs first as soon as
the eluent contacts the adsorbent. This results in almost
instantanecusly reaching a maximum column output concentration,
followed by a gradual decline in output concentration as the
desorbing molecules diffuse slowly to the surface of the
adsorbent particles and are diluted in the eluting stream. In
the case of a Productiv CM packed column, there is a double peak
in desorption rates, giving a "bobsled" desorption curve. To
predict this "bobsled" desorption curve using a mechanistic model
is rather difficult. Few reports on modeling a protein desorption

process have been found in the literature to date.

This paper demonstrates how a simple neural network model
can be used effectively for process identification and prediction
of protein adsorption and desorption in a packed column. The main
advantage of a neural network model is that it does not require
(1) any process assumption; (2) any insight or deep understanding
of the process; (3) predetermination of any model parameter.
Conversely, the use of a neural network model adds no insight
into the mechanism or validity of any process assumptions. A

significant drawback of a neural network model, in comparison
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with mechanistic methods, is that training a network usually
requires a great deal of experimental data, which can be larger
by orders of magnitude than required for a mechanistic model (5).
Fortunately, modern computer acquisition of data readily
generates a large quantity of usable information suitable for
training. In this study, we trained the neural network model
using a "full range" training method, which required two sets of
data obtained at the maximum and minimum of the range of
operating parameters used. This gave an acceptably short training

time.

EXPERITMENTAL METHOD

A 250 x 10 mm-ID Productiv™ CM ion-exchange (6) column
(BPS Separation Ltd, County Durham, UK) was used to adsorb 3 g
lysozyme (Fluka Chemika-Biochemika, UK) dissolved in 0.02 M
sodium acetate buffer, pH 5. After washing with 0.02 M sodium
acetate buffer (pH 5), the column was eluted with 0.7 M NaCl. For
the case of fractionation, the Productiv CM column was loaded
with 60 mL of 38 mg/mL egg-white protein solution at pH 4.7 and
then was fractionated using gradient elution of 250 mL sodium
acetate buffer, pH 4.7, and 250 mL 0.7 M NaCl (7). An LKB
Uvicord II monitor was used on-line to detect the protein
concentration from the column outlet at 280 nm. Data were
collected and subsequently processed by a Viglen IV/25 computer
(Viglen Ltd, London) through a data logging programme.

NEURAL NETWORK MODEL AND TRAINING METHOD

The neural network model used in this study is similar

to that used in previous work (8) shown in Figure 1. The weights
were randomly initialized. Dynamic column elution volume (product
of flow rate and processing time) was the input x,. Dynamic
loaded protein or salt in weight [product of flow rate, feedstock
concentration (protein or salt) or salt concentration slope, K,
and processing time] was the input x,. Input X; was a bias which
was a normalization of feedstock concentration. The network
training corrected the weights by a standard back propagation of
errors algorithm using an "inhouse" program written in Turbo
Basic. The training time was 3 h for identification of the
adsorption breakthrough curve, 1 h for identification of the

desorption process and 10 h tfor identification of the
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hidden layer
input layer
x1 — output layer
x2
x3 Y

FIG. 1 Neural network structure used in this study

fractionation process by using a Viglen IV/25 486 computer. The

subsequent predictions took only a few seconds.

Full-range training meant that two sets of data obtained
at the maximum and minimum of flow rates and a single feedstock

concentration, or otherwise, were used for the network training.

RESULTS AND DISCUSSION

Identification and Prediction of the Effect of Flow Rate on

Column Adsorption Breakthrough Curve

Figure 2 shows the training fits given by a neural network
model, coded as N-WF1l, trained with data obtained at a maximum
flow rate (17 mL/min) and a minimum flow rate (1.3 mL/min). This
model was then used to predict the effects of flow rates on
column breakthrough curves at other flow rates. Test results
shown in Figure. 3 used flow rates of 5.8, 7, and 10 wL/min,
which were randomly chosen within the training range. These
results indicate that the model N-WF1l predicts mest parts of the
breakthrough curve well except for the tailing. This can be
improved if one more set of data was introduced into the
training. In practice, the tail region of a breakthrough curve
is less important than the initial region or the first half of
curve, as loading is normally stopped as initial breakthrough
occurs. In this case, the network trained with the data obtained
only at the maximum and minimum flow rates can follow the effect
of flow rate well and gives a satisfactory prediction for the

first half of the column breakthrough curve.
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FIG. 2 Training fits given by network N-WF1
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FiG. 3 Prediction of effect of interpolated flow rate on breakthough

curve using network N-WF1 (feed concentration: 1.5 mg/mL)
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It was also possible to predict the effect on the
breakthrough curve of some flow rates beyond the training range.
Figure 4 shows that a network model, coded as N-WF3, trained with
data obtained at flow rates of 5.8 and 10 mL/min, was able to
predict the breakthrough curves for flow rates both within (6.8
mL/min) and outside (1.3 mL/min and 17 mL/min) the training
range. The lowest flow rate used (1.3 mL/min) did not result in
a very good prediction of the first half of the breakthrough
curve. (Figure 4). The range of flow rates used are at the high
end of normal cperation of preparative chromatographic columns
which tend to be used up to linear flows of 1 m/h. This
corresponds to the 1.3 mL/min with the flow of 17 mL/min being
over 12 m/h. This is the region where flow rates are considered
very high and where operators have concern that breakthrough will

not be easily predicted.

Identification and Prediction of the Effect of Feed Concentration

on Breakthrough Curve

For prediction of the effect of feedstock concentration,
the neural network trained with only two sets of data obtained
at the maximum and minimum feedstock concentrations failed to
give a satisfactory prediction in spite of the good training
fits. When full ranges of both flow rates (1.3 and 17 mL/min) and
feedstock concentrations (0.5 and 3 mg/mL) were used to train the
neural network, the neural network model, coded as N-WFC, was
able to give a satisfactory prediction for the column
breakthrough curve following changes in feedstock concentration
in flow rate, or in both, as can be seen in Figures. 5. This
suggests that to identify the effects of both flow rate and feed
concentration at least four data sets are required for the

network training.

Identification and Prediction of Desorption and Fractionation

Processes

In this case, only the effect of flow rate was
considered. Simply applying the full range of flow rate training
method to the desorption, the network gave a poor prediction with
considerable time shifts (Figure 6). To improve the network

performance alternative scaling algorithms were attempted.
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FIG. 4 Prediction of effect of interpolated and extrapolated
flow rate on breakthrough curve using network N-WF3
(feed concentration: 1.5 mg/mL)
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FIG. 5 Prediction of effects of both flow rate and concentration
on breakthrough curve using network N-WFC



12: 02 25 January 2011

Downl oaded At:

1404 MING ET AL.

pred. 4.4mL/min
exper. 4.4mL/min
pred. 17mL/min

exper. 17mL/min

0w ;
0 10 20 30 40 50 60
column elution time (min)

FIG. 6 Desorption identification using the flow rate
data scaled linearily

Firstly the flcw rate data were scaled in its nth root form. The
attenuation of the flow rate range appeared to be helpful and the
prediction error was thus considerably reduced. A trial and error
method was carried out to find the optimum value of "n", however
this was found to be time consuming. A logarithm scaling method
was then suggested, as it was thought that the factor of nth root
would end up as parts of the weights developed during the network
training in view of the nature of the logarithm function. Figure
7 shows the significantly improved predictions given by the

trained network {coded as N-Logl) using this scale method.

The same method was applied to the case of fractionation,
the trained network (cocded as N-log2) can give reasonable
predictions (Figure 8).

The neural networks used are summarized in Table 1

CONCLUSIONS

In the case of prediction of the flow rate effect on

adsorption breakthrough curve, two sets of data obtained at
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FIG. 7 Desorption identification using the flow rate data scaled
in the form of logarithm
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FIG. 8 Prediction of egg-white protein fractionation using
network N-Log2

TABLE 1. NEURAL NETWORKS USED IN THIS PAPER

Network Training Data Data Scale Figures
Conditions Method
N-WF1 (1.3 mL/min, 1.5 mg/mL) linear 2 & 3
(17 mL/min, 1.5 mg/mL)
N-WF3 (5.6 mL/min, 1.5 mg/mL) linear 4
(10 mL/min, 1.5 mg/mL)
N-WFC (1.3 mL/min, 1.5 mg/mL) 1linear 5

(17 mL/min, 1.5 wmg/mL)
(10 mL/min, 0.5 mg/mL)
(10 mL/min, 3 mg/mL)

N-LOG1 (1.3 mL/min), (22 logarithm 7
mL/min)
N-LOG2 (2.4 mL/min), (18 logarithm 8

mL/min)
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different flow rates were sufficient to train the neural network
model. Such a trained network can be used to predict the effect
of flow rate on the breakthrough curve within the flow rate range
used in the network training and even beyond this range, albeit
with reduced accuracy. In the case of predictions of the flow
rate effect on the column desorption and fractionation, the flow

rate input should be input in the form of logarithm.

For following the effects of feedstock concentration on
the column breakthrough curve, two sets of data were not
sufficient for the network training. It required at least four
sets of training data. If these were used from a star design,
prediction was successful. This gave at least three separate

values of each variable within the training sets.

In comparison with mechanistic modeling, the neural
network modeling applied in this study was easy to develop and
robust to use. It would seem to be useful to allow optimization
of the loading and elution protocols by varying flow rates and

then predicting the overall productivity of the system.
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