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IDENTIFICATION AND PREDICTION OF PROTEIN ADSORPTION 
BREAKTHROUGH, DESORPTION, AND FRACTIONATION IN A PACKED COLUMN 

USING A NEURAL NETWORK 

Fang Ming, M. Yang, John Howell and John Hubble 
School of Chemical Engineering, University of Bath, UK. 

ABSTRACT 

A simple neural network with a three-node hidden layer 
has been used to identify and predict protein adsorption, 
desorption and fractionation profiles in a 25 x 1 cm ID 
ProductivTM CM ion-exchange column. To predict the effect of flow 
rate on the adsorption breakthrough curve, two sets of data 
obtained at the maximum and minimum of the full range of flow 
rates used were sufficient to train the neural network which was 
then able to predict the effects of flow rate changes within the 
training range on the adsorption breakthrough curve. This 
training method was also applied to explore the effects of flow 
rate on desorption and fractionation. It was found that the 
network training algorithm performed satisfactorily if the flow 
rate data f o r  desorption and fractionation were scaled in the 
form of logarithm. 

INTRODUCTION 
Modeling protein chromatographic processes in a packed 

column is of great importance for performance optimization and 
scale-up. Yet the physical and thermodynamic phenomena involved 
in t he  protein adsorption or desorption process are still not 
fully understood (1). A mechanistic model may give good 
predictions for a linear adsorption or desorption process, but 
the use of such a model is limited for nonlinear adsorption 
processes. Simplifying assumptions are usually needed to develop 
a model which handles the problem more easily and to reduce the 
Computation time. Prior or on-line determination of the isotherm 
parameters, maximum capacity, qm, and dissociation constant, K,, 
and adsorption or desorption rate constants is usually required 
by a mechanistic model. These parameters are often determined by 
separate measurements, usually taking days. ~f a model includes 
the factors of mass transfer, the values of bed voidage, particle 
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porosity, diffusion, and axial dispersion coefficients will be 
required. This consequently requires the use of correlations 
which need validating or separate measurements, which are time 
consuming. Moreover, the reliability of such parameter 
determination is often questionable. Tsou and Graham ( 2 )  

developed a two-phase resistance model, but their model could not 
predict the early part of the breakthrough curve well. Skidmore 
and Chase ( 3 )  and Skidmore et.al. ( 4 )  developed a simple kinetic 
rate constant model and a film and pore diffusion model for 
lysozyme and bovine serum albumin (BSA) adsorption in a column 
packed with Sepharose FF ion-exchanger. In order to give a good 
curve fit, the values of q, and k, estimated from the isotherm 
and a batch uptake experiments needed to be readjusted for each 
case. This shows that a mechanistic model may give reasonable 
predictions, but at a greater expense of a process mechanism 
investigation and parameter predetermination. 

For a nonanalytic or preparative packed column, stepwise 
desorption is a nonlinear process. Desorption, whose mechanism 
is still not fully understood, usually occurs first as soon as 
the eluent contacts the adsorbent. This results in almost 
instantaneously reaching a maximum column output concentration, 
followed by a gradual decline in output concentration as the 
desorbing molecules diffuse slowly to the surface of the 
adsorbent particles and are diluted in the eluting stream. In 
the case of a Productiv CM packed column, there is a double peak 
in desorption rates, giving a "bobsled" desorption curve. To 
predict this "bobsled" desorption curve using a mechanistic model 
is rather difficult. Few reports on modeling a protein desorption 
process have been found in the literature to date. 

This paper demonstrates how a simple neural network model 
can be used effectively for process identification and prediction 
of protein adsorption and desorption in a packed column. The main 
advantage of a neural network model is that it does not require 
(1) any process assumption; ( 2 )  any insight or deep understanding 
of the process; ( 3 1  predetermination of any model parameter. 
Conversely, the use of a neural network model adds no insight 
into the mechanism or validity of any process assumptions. A 
significant drawback of a neural network model, in comparison 
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with mechanistic methods, is that training a network usually 
requires a great deal of experimental data, which can be larger 
by orders of magnitude than required for a mechanistic model (5). 
Fortunately, modern computer acquisition of data readily 
generates a large quantity of usable information suitable for 
training. In this study, we trained the neural network model 
using a "full range" training method, which required two sets of 
data obtained at the maximum and minimum of the range of 
operating parameters used. This gave an acceptably short training 
time . 

EXPERIMENTAL METHOD 
A 250 x 10 mm-ID Productiv" CM ion-exchange (6) column 

(BPS Separation Ltd, County Durham, UK) was used to adsorb 3 g 
lysozyme (Fluka Chemika-Biochemika, UK) dissolved in 0.02 N 
sodium acetate buffer, pH 5. After washing with 0.02 M sodium 
acetate buffer (pH 5) , the column was eluted with 0.7 M NaCl. For 
the case of fractionation, the Productiv CM column was loaded 
with 60 mL of 38 mg/mL egg-white protein solution at pH 4.7 and 
then was fractionated using gradient elution of 250 mL sodium 
acetate buffer, pH 4.7, and 250 mL 0.7 M NaCl (7). An LKB 
Uvicord I1 monitor was used on-line to detect the protein 
concentration from the column outlet at 280 nm. Data were 
collected and subsequently processed by a Viglen IV/25 computer 
(Viglen Ltd, London) through a data logging programme. 

NEURAL NETWORK MODEL AND T R A I N I N G  METHOD 
The neural network model used in this study is similar 

to that used in previous work (8) shown in Figure 1. The weights 
were randomly initialized. Dynamic column elution volume (product 
of flow rate and processing time) was the input x,. Dynamic 
loaded protein or salt in weight [product of flow rate, feedstock 
concentration (protein or salt) or salt concentration slope, K, 
and processing time] was the input x,. Input x3 was a bias which 
was a normalization of feedstock concentration. The network 
training corrected the weights by a standard back propagation of 
errors algorithm using an "inhouse" program written in Turbo 
Basic. The training time was 3 h for identification of the 
adsorption breakthrough curve, l !I for identification of the 
desorption process and 10 h :or identification of the 
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output layer 

x3 

FIG. 1 Neural network structure used in this study 

fractionation process by using a Viglen IV/25 486 computer. The 
subsequent predictions took only a few seconds. 

Full-range training meant that two sets of data obtained 
at the maximum and minimum of flow rates and a single feedstock 
concentration, or otherwise, were used for the network training. 

RESULTS AND DISCUSSION 
Identification and Prediction of the Effect of Flow Rate on 

Column Adsorution Breakthrouqh Curve 
Figure 2 shows the training fits given by a neural network 

model, coded as N-WF1, trained with data obtained at a maximum 
flow rate (17 mL/min) and a minimum flow rate (1.3 mL/min). This 
model was then used to predict the effects of flow rates on 
column breakthrough curves at other flow rates. Test results 
shown in Figure. 3 used flow rates of 5 . 8 ,  7, and 10 mL/min, 
which were randomly chosen within the training range. These 
results indicate that the model N-WF1 predicts most parts of the 
breakthrough curve well except for the tailing. This can be 
improved if one more set of data was introduced into the 
training. In practice, the tail region of a breakthrough curve 
is less important than the initial region or the first half of 
curve, as loading is normally stopped as initial breakthrough 
occurs. In this case, the network trained with the data obtained 
only at the maximum and minimum flow rates can follow the effect 
of flow rate well and gives a satisfactory prediction for the 
first half of the column breakthrough curve. 
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FIG. 2 Training fits given by network N-WFl 
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1402 MING ET AL. 

It was also possible to predict the effect on the 
breakthrough curve of some flow rates beyond the training range. 
Figure 4 shows that a network model, coded as N-WF3, trained with 
data obtained at flow rates of 5.8 and 10 ml/min, was able to 
predict :he breakthrough curves for flow rates both within (6.8 

mL/min) and outside 1 1 . 3  ml/min and 17 mL/min) the training 
range. The lowest flow rate used (1.3 mL/min) did not result in 
a very good prediction of the first half of the breakthrough 
curve.(Figure 4 ) .  The range of flow rates used are at the high 
end of normal operation of preparative chromatographic columns 
which tend to be used up to linear flows of 1 m/h. This 
corresponds to the 1.3 mL/min with the flow of 17 mL/min being 
over 12 m/h. This is the region where flow rates are considered 
very high and where operators have concern that breakthrough will 
not be easily predicted. 

Identification and Prediction of the Effect of Feed Concentration 
on Breakthrough Curve 

For prediction of the effect of feedstock concentration, 
the neural network trained with only two sets of data obtained 
at the maximum and minimum feedstock concentrations failed to 
give a satisfactory prediction in spite of the good training 
fits. When full ranges of both flow rates (1.3 and 17 mL/min) and 
feedstock concentrations ( 0 . 5  and 3 mg/mL) were used to train the 
neural network, the neural network model, coded as N-WFC, was 
able to give a satisfactory prediction for the column 
breakthrough curve following changes in feedstock concentration 
in flow rate, or in both, as can be seen in Figures. 5. This 
suggests that to identify the effects of both flow rate and feed 
concentration at least four data sets are required for the 
network training. 

Identification and Prediction of Desorption and Fractionation 

Processes 
In this case, only the effect of flow rate was 

considered. Sirrply applying the full range of flow rate training 
method to the desorption, the network gave a poor prediction with 
considerable time shifts (Figure 6 ) .  To improve the network 
Ferformance alternative scaling algorithms were attempted. 
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FIG. 4 Prediction of effect of interpolated and extrapolated 
flow rate on breakthrough curve using network N-WF3 
(feed concentration: 1.5 mg/mL) 
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FIG. 6 Desorption identification using the flow rate 
data scaled linearily 

Firstly the flcw rate data were scaled in its nth root form. The 
attenuation of the flow rate range appeared to be helpful and the 
prediction error was thus considerably reduced. Atrial and error 
method was carried out to find the optimum value of "n", however 
this was found to be time consuming. A logarithm scaling method 
was then suggested, as it was thought that the factor of nth root 
would end up as parts of the weights developed during the network 
training in view of the nature of the logarithm function. Figure 
7 shows the significantly improved predictions given by the 
trained network (coded as N-Logl) using this scale method. 

The same method was applied to the case of fractionation, 
the trained network (coded as N-log2) can give reasonable 
predictions (Figure 8 ) .  

The neural networks used are summarized in Table 1 

CONCLUSIONS 

In the case of prediction of the flow rate effect on 
adsorption breakthrough curve, two sets of data obtained at 
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FIG. 7 Desorption identification using the flow rate data scaled 
in the form of logarithm 
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TABLE 1. NEURAL NETWORKS USED IN THIS PAPER 

Network Training Data Data Scale Figures 
Conditions Met hod 

(17 mL/min, 1.5 mg/mL) 
N-WF1 (1.3 mL/min, 1.5 mg/mL) linear 2 & 3  

N-WF3 (5.6 mL/min, 1.5 mg/mL) linear 4 

N-WFC (1.3 mL/min, 1.5 mg/mL) linear 5 

(10 mL/min, 1.5 mg/mL) 

(17 mL/min, 1.5 mg/mL) 
( 1 0  mL/min, 0 . 5  mg/mL) 
(10 mL/min, 3 mg/mL) 

mL/min) 

mL/min) 

N-LOG1 (1.3 mL/min) , (22 logarithm 7 

N-LOG2 (2.4 mL/min), (1% logarithm 8 
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1406 MING ET AL. 

different flow rates were sufficient to train the neural network 
model. Such a trained network can be used to predict the effect 
of flow rate on the breakthrough curve within the flow rate range 
used in the network training and even beyond this range, albeit 
with reduced accuracy. In the case of predictions of the flow 
rate effect on the column desorption and fractionation, the flow 
rate input should be input in the form of logarithm. 

For following the effects of feedstock concentration on 
the column breakthrough curve, two sets of data were not 
sufficient for the network training. It required at least four 
sets of training data. If these were used from a star design, 
prediction was successful. This gave at least three separate 
values of each variable within the training sets. 

In comparison with mechanistic modeling, the neural 
network modeling applied in this study was easy to develop and 
robust to use. It would seem to be useful to allow optimization 
of the loading and elution protocols by varying flow rates and 
then predicting the overall productivity of the system. 

1. 

2 .  
3 .  

4 .  

5 .  

6. 

I .  
8. 

REFERENCES 

J.C. Bellot and J.S. Condoret, Process Biochem. 2 6 ,  363 
(1991). 
H. Tsou and E.E. Graham, AIChE J. 31 (12), 1959 (1985). 
G.L. Skidmore and H.H. Chase, In Ion-Exchanqe for Industry, 
Naden, D. (Ed), Eills Horwood Ltd, 1988, p . 5 2 0 .  
G.L. Skidmore, B.J. Horstmann and H.A. Chase, J. 
Chromatogr. 498, 129 (1992). 
J.F. Pollard, M.R. Broussard, D.B. Garrison, and K.Y. San, 
Comput. Chem. Eng. A ,  253 (1992). 
Fang Ming, J.A. Howell, International Patent. W091/17830 
(1991). 
Fang Ming and J.A. Howell, J. Chromatogr. 539, 255 (1991). 
Fang Ming, M. Yang, J. Hubble, A.D. Lockett and R.R. 
Rathbone, Biotechnol. Tech. 7 (2), 155 (1993) . 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
0
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1


